Cloud World

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Monday, 14 November 2011

Google BigQuery Service: Big data analytics at Google speed

Posted on 13:35 by Unknown
Our post today, cross-posted with the Google Enterprise Blog, comes from one of our sister projects, BigQuery. We know that many of you are interested in processing large volumes of data and we encourage you to try it out.




Rapidly crunching terabytes of big data can lead to better business decisions, but this has traditionally required tremendous IT investments. Imagine a large online retailer that wants to provide better product recommendations by analyzing website usage and purchase patterns from millions of website visits. Or consider a car manufacturer that wants to maximize its advertising impact by learning how its last global campaign performed across billions of multimedia impressions. Fortune 500 companies struggle to unlock the potential of data, so it’s no surprise that it’s been even harder for smaller businesses.




We developed Google BigQuery Service for large-scale internal data analytics. At Google I/O last year, we opened a preview of the service to a limited number of enterprises and developers. Today we're releasing some big improvements, and putting one of Google's most powerful data analysis systems into the hands of more companies of all sizes.




  • We’ve added a graphical user interface for analysts and developers to rapidly explore massive data through a web application.

  • We’ve made big improvements for customers accessing the service programmatically through the API. The new REST API lets you run multiple jobs in the background and manage tables and permissions with more granularity. 

  • Whether you use the BigQuery web application or API, you can now write even more powerful queries with JOIN statements. This lets you run queries across multiple data tables, linked by data that tables have in common.

  • It’s also now easy to manage, secure, and share access to your data tables in BigQuery, and export query results to the desktop or to Google Cloud Storage.






Michael J. Franklin, Professor of Computer Science at UC Berkeley, remarked that BigQuery (internally known as Dremel) leverages “thousands of machines to process data at a scale that is simply jaw-dropping given the current state of the art.” We’re looking forward to helping businesses innovate faster by harnessing their own large data sets. BigQuery is available free of charge for now, and we’ll let customers know at least 30 days before the free period ends. We’re bringing on a new batch of pilot customers, so let us know if your business wants to test-drive BigQuery Service.





Posted by Ju-Kay Kwek, Product Manager
Email ThisBlogThis!Share to XShare to Facebook
Posted in | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • Bridging Mobile Backend as a Service to Enterprise Systems with Google App Engine and Kinvey
    The following post was contributed by Ivan Stoyanov , VP of Engineering for Kinvey, a mobile Backend as a Service provider and Google Cloud ...
  • Tutorial: Adding a cloud backend to your application with Android Studio
    Android Studio lets you easily add a cloud backend to your application, right from your IDE. A backend allows you to implement functionality...
  • 2013 Year in review: topping 100,000 requests-per-second
    2013 was a busy year for Google Cloud Platform. Watch this space: each day, a different Googler who works on Cloud Platform will be sharing ...
  • Easy Performance Profiling with Appstats
    Since App Engine debuted 2 years ago, we’ve written extensively about best practices for writing scalable apps on App Engine. We make writ...
  • TweetDeck and Google App Engine: A Match Made in the Cloud
    I'm Reza and work in London, UK for a startup called TweetDeck . Our vision is to develop the best tools to manage and filter real time ...
  • Scaling with the Kindle Fire
    Today’s blog post comes to us from Greg Bayer of Pulse , a popular news reading application for iPhone, iPad and Android devices. Pulse has ...
  • Who's at Google I/O: Mojo Helpdesk
    This post is part of Who's at Google I/O , a series of guest blog posts written by developers who are appearing in the Developer Sandbox...
  • A Day in the Cloud, new articles on scaling, and fresh open source projects for App Engine
    The latest release of Python SDK 1.2.3, which introduced the Task Queue API and integrated support for Django 1.0, may have received a lot ...
  • SendGrid gives App Engine developers a simple way of sending transactional email
    Today’s guest post is from Adam DuVander, Developer Communications Director at SendGrid. SendGrid is a cloud-based email service that deliv...
  • Qubole helps you run Hadoop on Google Compute Engine
    This guest post comes form Praveen Seluka, Software Engineer at Qubole, a leading provider of Hadoop-as-a-service.  Qubole is a leading pr...

Categories

  • 1.1.2
  • agile
  • android
  • Announcements
  • api
  • app engine
  • appengine
  • batch
  • bicycle
  • bigquery
  • canoe
  • casestudy
  • cloud
  • Cloud Datastore
  • cloud endpoints
  • cloud sql
  • cloud storage
  • cloud-storage
  • community
  • Compute Engine
  • conferences
  • customer
  • datastore
  • delete
  • developer days
  • developer-insights
  • devfests
  • django
  • email
  • entity group
  • events
  • getting started
  • google
  • googlenew
  • gps
  • green
  • Guest Blog
  • hadoop
  • html5
  • index
  • io2010
  • IO2013
  • java
  • kaazing
  • location
  • mapreduce
  • norex
  • open source
  • partner
  • payment
  • paypal
  • pipeline
  • put
  • python
  • rental
  • research project
  • solutions
  • support
  • sustainability
  • taskqueue
  • technical
  • toolkit
  • twilio
  • video
  • websockets
  • workflows

Blog Archive

  • ►  2013 (143)
    • ►  December (33)
    • ►  November (15)
    • ►  October (17)
    • ►  September (13)
    • ►  August (4)
    • ►  July (15)
    • ►  June (12)
    • ►  May (15)
    • ►  April (4)
    • ►  March (4)
    • ►  February (9)
    • ►  January (2)
  • ►  2012 (43)
    • ►  December (2)
    • ►  November (2)
    • ►  October (8)
    • ►  September (2)
    • ►  August (3)
    • ►  July (4)
    • ►  June (2)
    • ►  May (3)
    • ►  April (4)
    • ►  March (5)
    • ►  February (3)
    • ►  January (5)
  • ▼  2011 (46)
    • ►  December (3)
    • ▼  November (4)
      • Scaling with the Kindle Fire
      • New Datastore client library for Python ready for ...
      • Google BigQuery Service: Big data analytics at Goo...
      • App Engine 1.6.0 Out of Preview Release
    • ►  October (4)
    • ►  September (5)
    • ►  August (3)
    • ►  July (4)
    • ►  June (3)
    • ►  May (8)
    • ►  April (2)
    • ►  March (5)
    • ►  February (3)
    • ►  January (2)
  • ►  2010 (38)
    • ►  December (2)
    • ►  October (2)
    • ►  September (1)
    • ►  August (5)
    • ►  July (5)
    • ►  June (6)
    • ►  May (3)
    • ►  April (5)
    • ►  March (5)
    • ►  February (2)
    • ►  January (2)
  • ►  2009 (47)
    • ►  December (4)
    • ►  November (3)
    • ►  October (6)
    • ►  September (5)
    • ►  August (3)
    • ►  July (3)
    • ►  June (4)
    • ►  May (3)
    • ►  April (5)
    • ►  March (3)
    • ►  February (7)
    • ►  January (1)
  • ►  2008 (46)
    • ►  December (4)
    • ►  November (3)
    • ►  October (10)
    • ►  September (5)
    • ►  August (6)
    • ►  July (4)
    • ►  June (2)
    • ►  May (5)
    • ►  April (7)
Powered by Blogger.

About Me

Unknown
View my complete profile