Cloud World

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Monday, 14 November 2011

Google BigQuery Service: Big data analytics at Google speed

Posted on 13:35 by Unknown
Our post today, cross-posted with the Google Enterprise Blog, comes from one of our sister projects, BigQuery. We know that many of you are interested in processing large volumes of data and we encourage you to try it out.




Rapidly crunching terabytes of big data can lead to better business decisions, but this has traditionally required tremendous IT investments. Imagine a large online retailer that wants to provide better product recommendations by analyzing website usage and purchase patterns from millions of website visits. Or consider a car manufacturer that wants to maximize its advertising impact by learning how its last global campaign performed across billions of multimedia impressions. Fortune 500 companies struggle to unlock the potential of data, so it’s no surprise that it’s been even harder for smaller businesses.




We developed Google BigQuery Service for large-scale internal data analytics. At Google I/O last year, we opened a preview of the service to a limited number of enterprises and developers. Today we're releasing some big improvements, and putting one of Google's most powerful data analysis systems into the hands of more companies of all sizes.




  • We’ve added a graphical user interface for analysts and developers to rapidly explore massive data through a web application.

  • We’ve made big improvements for customers accessing the service programmatically through the API. The new REST API lets you run multiple jobs in the background and manage tables and permissions with more granularity. 

  • Whether you use the BigQuery web application or API, you can now write even more powerful queries with JOIN statements. This lets you run queries across multiple data tables, linked by data that tables have in common.

  • It’s also now easy to manage, secure, and share access to your data tables in BigQuery, and export query results to the desktop or to Google Cloud Storage.






Michael J. Franklin, Professor of Computer Science at UC Berkeley, remarked that BigQuery (internally known as Dremel) leverages “thousands of machines to process data at a scale that is simply jaw-dropping given the current state of the art.” We’re looking forward to helping businesses innovate faster by harnessing their own large data sets. BigQuery is available free of charge for now, and we’ll let customers know at least 30 days before the free period ends. We’re bringing on a new batch of pilot customers, so let us know if your business wants to test-drive BigQuery Service.





Posted by Ju-Kay Kwek, Product Manager
Email ThisBlogThis!Share to XShare to Facebook
Posted in | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • A Day in the Cloud, new articles on scaling, and fresh open source projects for App Engine
    The latest release of Python SDK 1.2.3, which introduced the Task Queue API and integrated support for Django 1.0, may have received a lot ...
  • Tutorial: Adding a cloud backend to your application with Android Studio
    Android Studio lets you easily add a cloud backend to your application, right from your IDE. A backend allows you to implement functionality...
  • Outfit 7’s Talking Friends built on Google App Engine, recently hit one billion downloads
    Today’s guest blogger is Igor Lautar, senior director of technology at Outfit7 (Ekipa2 subsidiary), one of the fastest-growing media enterta...
  • Bridging Mobile Backend as a Service to Enterprise Systems with Google App Engine and Kinvey
    The following post was contributed by Ivan Stoyanov , VP of Engineering for Kinvey, a mobile Backend as a Service provider and Google Cloud ...
  • TweetDeck and Google App Engine: A Match Made in the Cloud
    I'm Reza and work in London, UK for a startup called TweetDeck . Our vision is to develop the best tools to manage and filter real time ...
  • New Admin Console Release
    Posted by Marzia Niccolai, App Engine Team Today we've released some new features in our Admin Console to make it easier for you to mana...
  • Qubole helps you run Hadoop on Google Compute Engine
    This guest post comes form Praveen Seluka, Software Engineer at Qubole, a leading provider of Hadoop-as-a-service.  Qubole is a leading pr...
  • The new Cloud Console: designed for developers
    In June, we unveiled the new Google Cloud Console , bringing together all of Google’s APIs, Services, and Infrastructure in a single interfa...
  • Pushing Updates with the Channel API
    If you've been watching Best Buy closely, you already know that Best Buy is constantly trying to come up with new and creative ways to...
  • Google BigQuery goes real-time with streaming inserts, time-based queries, and more
    Google BigQuery is designed to make it easy to analyze large amounts of data quickly. This year we've seen great updates: big scale JOI...

Categories

  • 1.1.2
  • agile
  • android
  • Announcements
  • api
  • app engine
  • appengine
  • batch
  • bicycle
  • bigquery
  • canoe
  • casestudy
  • cloud
  • Cloud Datastore
  • cloud endpoints
  • cloud sql
  • cloud storage
  • cloud-storage
  • community
  • Compute Engine
  • conferences
  • customer
  • datastore
  • delete
  • developer days
  • developer-insights
  • devfests
  • django
  • email
  • entity group
  • events
  • getting started
  • google
  • googlenew
  • gps
  • green
  • Guest Blog
  • hadoop
  • html5
  • index
  • io2010
  • IO2013
  • java
  • kaazing
  • location
  • mapreduce
  • norex
  • open source
  • partner
  • payment
  • paypal
  • pipeline
  • put
  • python
  • rental
  • research project
  • solutions
  • support
  • sustainability
  • taskqueue
  • technical
  • toolkit
  • twilio
  • video
  • websockets
  • workflows

Blog Archive

  • ►  2013 (143)
    • ►  December (33)
    • ►  November (15)
    • ►  October (17)
    • ►  September (13)
    • ►  August (4)
    • ►  July (15)
    • ►  June (12)
    • ►  May (15)
    • ►  April (4)
    • ►  March (4)
    • ►  February (9)
    • ►  January (2)
  • ►  2012 (43)
    • ►  December (2)
    • ►  November (2)
    • ►  October (8)
    • ►  September (2)
    • ►  August (3)
    • ►  July (4)
    • ►  June (2)
    • ►  May (3)
    • ►  April (4)
    • ►  March (5)
    • ►  February (3)
    • ►  January (5)
  • ▼  2011 (46)
    • ►  December (3)
    • ▼  November (4)
      • Scaling with the Kindle Fire
      • New Datastore client library for Python ready for ...
      • Google BigQuery Service: Big data analytics at Goo...
      • App Engine 1.6.0 Out of Preview Release
    • ►  October (4)
    • ►  September (5)
    • ►  August (3)
    • ►  July (4)
    • ►  June (3)
    • ►  May (8)
    • ►  April (2)
    • ►  March (5)
    • ►  February (3)
    • ►  January (2)
  • ►  2010 (38)
    • ►  December (2)
    • ►  October (2)
    • ►  September (1)
    • ►  August (5)
    • ►  July (5)
    • ►  June (6)
    • ►  May (3)
    • ►  April (5)
    • ►  March (5)
    • ►  February (2)
    • ►  January (2)
  • ►  2009 (47)
    • ►  December (4)
    • ►  November (3)
    • ►  October (6)
    • ►  September (5)
    • ►  August (3)
    • ►  July (3)
    • ►  June (4)
    • ►  May (3)
    • ►  April (5)
    • ►  March (3)
    • ►  February (7)
    • ►  January (1)
  • ►  2008 (46)
    • ►  December (4)
    • ►  November (3)
    • ►  October (10)
    • ►  September (5)
    • ►  August (6)
    • ►  July (4)
    • ►  June (2)
    • ►  May (5)
    • ►  April (7)
Powered by Blogger.

About Me

Unknown
View my complete profile